
C Mount Lenses: What They Are and How They Work with Cameras
Table of Contents I. Introduction C Mount lenses are a type of interchangeable lens commonly
The progress in the fields of semiconductors, electronics, and camera modules has given birth to the field of embedded vision systems. Today, embedded vision systems are widely used in many sectors and applications including autonomous vehicles, security systems, industrial automation, medical imaging, and robotics. Camera modules capture and transmit visual information in an embedded vision system and therefore, are crucial for the overall performance of the system. In this article, we will explore different types of camera module interfaces for embedded vision applications including MIPI CSI-2, USB 2.0, USB 3.0, and GMSL. We will discuss the pros and cons of each of these interfaces and, will help you in selecting the right camera module for your embedded vision application.
MIPI CSI-2 is an abbreviation for Mobile Industry Processor Interface Camera Serial Interface Type-2. MIPI CSI-2 is a high-speed serial interface designed for transmitting image and video data from mobile camera modules to embedded processors. MIPI CSI-2 is amongst the most widely used interfaces in mobile phones, tablets, and handheld embedded devices. MIPI CSI-2 supports the peak bandwidth of 6 Gbps with a realistic bandwidth of 5 Gbps. The maximum supported cable length is 30 cm.
The history of MIPI CSI-2 interface can be traced back to the late 1990s and early 2000s, when the mobile industry was in its early stages of development. As mobile devices became more advanced, there was a growing need for efficient and reliable protocols for transmitting multimedia data between the camera and the host processor. MIPI Alliance, a group of leading mobile industry players, was established in 2003 to address these needs.
One of the key initiatives of the MIPI Alliance was the development of the MIPI Camera Serial Interface (CSI) specification. The first version, CSI-1, was released in 2005 and quickly became the standard for camera interfaces in mobile devices.
MIPI CSI-2 interface is the enhanced version of MIPI CSI-1 interface, which was introduced in 2010 to meet the increasing demand for high-definition multimedia and higher bandwidth in mobile devices. Since then, it has become the most widely adopted camera interface in the mobile industry and continues to evolve to meet the changing needs of the industry. Today, MIPI CSI-2 is used in a wide range of mobile devices, including smart-phones, tablets, laptops, and wearable devices.
The key advantages and disadvantages of MIPI CSI-2 interface are listed as following:
Advantages:
Disadvantages:
USB (Universal Serial Bus) is a widely used data transfer protocol in computing devices and embedded systems. In embedded vision systems, USB 2.0 and 3.0 protocols are commonly used for transferring image and video data from the camera sensor to the host processor. USB 2.0 interface supports a maximum data transfer rate of 480 Mbps while USB 3.0 interface supports a maximum data transfer rate of 5 Gbps.
USB 2.0 and 3.0 camera interfaces are widely used in embedded vision applications including surveillance systems, industrial inspection, and machine vision. USB camera interfaces are particularly suitable for low-cost and low-power applications. The plug-and-play capability is one of the biggest advantages of USB camera interface.
Advantages:
Disadvantages:
Gigabit Multimedia Serial Link or GMSL is a high-speed serial link protocol for the transmission of image/video data in embedded vision systems. GMSL provides a fast and reliable connection between the camera sensor and the host processor. GMSL uses differential pair for data transmission which increases noise immunity and data integrity. GMSL uses a unique encoding scheme which reduces the EMI (electromagnetic interference) and allows for longer cable lengths and higher data rates as compared to the traditional serial link camera interfaces.
GMSL finds its applications in a variety of embedded vision systems such as ADAS (advanced driver assistance system), autonomous vehicles, and quality control systems. GMSL is particularly suited for applications requiring high bandwidth, high reliability, and long transmission distances.
Advantages:
Disadvantages:
The selection for right camera module interface for an embedded vision application depends on a number of factors which are listed as following:
In this article we have explored different types of camera module interfaces for embedded vision applications, including MIPI CSI-2, USB 2.0, USB 3.0, and GMSL. The pros and cons of each interface were discussed to help the readers in selecting the right camera module interface for their embedded vision application. MIPI CSI-2 is a high-speed serial interface for transmitting image and video data, but with limited distance. USB 2.0 & 3.0 offer wider compatibility and low-cost, but have limited length and absence of dedicated video streaming. GMSL offers high-speed and high-bandwidth serial interface, but with limited compatibility and higher cost. Therefore, the selection of the right camera module interface is a trade-off between multiple factors including cost, performance, support, bandwidth, and transmission distance.
Table of Contents I. Introduction C Mount lenses are a type of interchangeable lens commonly
Table of Contents I. Introduction Robotic cameras have become a revolutionary force in various industries,
Table of Contents I. Introduction Capturing high quality images and videos is of prime importance
Table of Contents I. Introduction When it comes to zooming in on subjects while taking
Table of Contents 1: Introduction Embedded vision and camera systems play a crucial role in