
C Mount Lenses: What They Are and How They Work with Cameras
Table of Contents I. Introduction C Mount lenses are a type of interchangeable lens commonly
Embedded vision and camera systems play a crucial role in the today’s technology landscape with numerous applications across diverse sectors. The demand for high-quality video content is also increasing in such advanced applications. However, with limited memory capacity, the storage of high-quality video content is a real challenge. This is where video compression steps in as a game changer for the storage and processing of high-quality video content in embedded vision applications.
In this article we will explore different video compression formats and will help you choose the right compression format for your video application.
The process of reducing the size of a video file while preserving its quality to a reasonable extent is known as video compression. Since video data files tend to have very large sizes, therefore video compression is an essential technology for the efficient storage, transmission, and processing of video content.
High definition and real-time video processing systems rely heavily on video compression techniques for the reduction of video file size. Examples of such systems include video streaming platforms, video conferencing applications, and content management systems. Video compression is of prime importance in embedded vision applications as the storage capacity and processing capabilities are limited. Some of the important aspects regarding the selection of appropriate video compression format are listed as following:
H.264, H.265, and MJPEG are three different video compression formats, which are widely used in different video applications. The purpose of these compression formats is to reduce the video file size while maintaining the quality. Let’s discuss and understand the key differences, features, limitations, and applications of each of these three formats.
The H.264 is a video compression format developed by Joint Video Team (JVT) of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. H.264 is one of the most widely used video compression format. This standard is also known as MPEG-4 Part 10 or AVC (Advanced Video Coding). H.264 standard uses both inter-frame and intra-frame compression techniques to achieve reduced file size and high video quality. H.264 standard is used and supported by many popular platforms including: YouTube, Netflix, Zoom, and Skype.
H.264 is well-known for its excellent balance between video quality and compression efficiency. It offers reduced file sizes while maintaining high video quality. H.264 achieves this performance by utilizing various advanced techniques such as motion compensation, spatial/temporal estimation, and entropy coding. These techniques help in reducing redundancy in the video data, resulting in smaller file sizes without significant loss in visual quality.
Advantages of H.264 standard are as following:
Disadvantages of H.264 standard are as following:
H.265, also known as High Efficiency Video Coding (HEVC), is a video compression format and advanced version of H.264 (AVC). It was developed to provide significantly improved compression efficiency compared to H.264 format. H.265 achieves this improved performance through advanced coding techniques such as enhanced motion compensation, improved prediction algorithms, and entropy coding. These techniques allow H.265 to reduce video file sizes by up to 50% while delivering better video quality as compared to H.264. H.265 is particularly suitable for high-resolution video content, such as 4K and 8K, as it can smoothly handle larger data volumes. Major applications of H.265 include streaming, broadcasting, and video surveillance.
H.265 delivers similar or better video quality as compared to H.264 standard at the same bit rate. Salient features of H.265 include: finer details, reduced artifacts, sharper resolution, and vibrant colors. H.265 also offers superior compression efficiency which allows for increased reduction in file sizes while delivering superior video quality. H.265 achieves up to 50% higher efficiency compression as compared to H.264 standard. Hence, H.265 is better suited for applications with limited bandwidth and storage capacity.
Advantages of H.265 standard are as following:
Disadvantages of H.265 standard are as following:
MJPEG or motion JPEG is a video compression format based on the JPEG image compression format. This standard is developed by JPEG (Joint Photographic Experts Group). Unlike H.264 and H.265, MJPEG compresses each video frame as a separate JPEG image. This technique results in a relatively larger file size as compared to the inter-frame compression formats.
MJPEG standard offers higher video quality as compared to other formats as it treats each frame as a separate JPEG image. This compression technique leads to better video quality due to the absence of inter-frame dependencies or artifacts.
The compression performance of MJPEG is inferior to inter-frame compression standards like H.264 and H.265. The absence of inter-frame compression technique results in larger file size. Therefore, MJPEG format requires more storage space and higher streaming bandwidth. MJPEG is suitable for certain applications such as surveillance systems, medical imaging, and machine vision.
Advantages of MJPEG standard are as following:
Disadvantages of MJPEG standard are as following:
Factor | H.264 | H.265 | MJPEG |
Video quality
| Good | Better | Excellent |
Compression Efficiency | Moderate | High | Low |
Resolution Support
| 4K | 8K and beyond | 4K, 8K |
Compatibility | Widely supported | Increasingly supported | Limited support |
Decoding complexity | Moderate | Higher than H.264 | Low |
Real-time Support
| Suitable | More demanding | Not suitable |
Bandwidth Efficiency | Good | Excellent | High |
Storage Requirement | Moderate | Reduced | High |
Following are the main factors which need to be considered while selecting a video compression format for your application:
H.264:
H.265:
MJPEG:
Video compression is a crucial technology for the modern video streaming, archiving, and processing systems. The importance of video compression in embedded vision systems increases manifold as the storage space and computing power is limited. In this article we have discussed the three most commonly used video compression formats: H.264, H.265, and MJPEG. We have discussed the history, features, advantages, and disadvantages of each of these three compression formats. We have also provided a detailed comparison between these three video compression standards so that you can easily select a compression format for your video application.
Table of Contents I. Introduction C Mount lenses are a type of interchangeable lens commonly
Table of Contents I. Introduction Robotic cameras have become a revolutionary force in various industries,
Table of Contents I. Introduction Capturing high quality images and videos is of prime importance
Table of Contents I. Introduction When it comes to zooming in on subjects while taking
Table of Contents 1: Introduction Embedded vision and camera systems play a crucial role in